63 research outputs found

    Strain rate effects on the plastic flow in submicron copper pillars:Considering the influence of sample size and dislocation nucleation

    Get PDF
    Three-dimensional discrete dislocation dynamics (DDD) simulations are performed to investigate the plastic flow behaviors of submicron copper pillars under different loading rates, in which both inertial effect of dislocation motion and surface nucleation are taken into account. It is found that: (1) for pillars with a diameter below similar to 400 nm, there is a transition from internal dislocation multiplication to surface dislocation nucleation as the strain rate increases (>= 10(4) s(-1)); (2) for similar to 1 um diameter pillars, stable internal dislocation sources dominate for both low and high strain rates; (3) in general, a larger strain rate, smaller sample size and less internal dislocation sources make it more probable for a surface nucleation process to take the place of dislocation multiplication. Furthermore, a theoretical model is proposed to predict the submicron plastic behavior at different strain rates when internal dislocation sources prevail. (c) 2017 Elsevier Ltd. All rights reserved

    Cutting Force Predication Based on Integration of Symmetric Fuzzy Number and Finite Element Method

    Get PDF
    In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force

    Hydrogen Sulfide Protects against Chemical Hypoxia-Induced Injury by Inhibiting ROS-Activated ERK1/2 and p38MAPK Signaling Pathways in PC12 Cells

    Get PDF
    Hydrogen sulfide (H2S) has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl2) is a well-known hypoxia mimetic agent. We have demonstrated that H2S protects against CoCl2-induced injuries in PC12 cells. However, whether the members of mitogen-activated protein kinases (MAPK), in particular, extracellular signal-regulated kinase1/2(ERK1/2) and p38MAPK are involved in the neuroprotection of H2S against chemical hypoxia-induced injuries of PC12 cells is not understood. We observed that CoCl2 induced expression of transcriptional factor hypoxia-inducible factor-1 alpha (HIF-1α), decreased cystathionine-β synthase (CBS, a synthase of H2S) expression, and increased generation of reactive oxygen species (ROS), leading to injuries of the cells, evidenced by decrease in cell viability, dissipation of mitochondrial membrane potential (MMP) , caspase-3 activation and apoptosis, which were attenuated by pretreatment with NaHS (a donor of H2S) or N-acetyl-L cystein (NAC), a ROS scavenger. CoCl2 rapidly activated ERK1/2, p38MAPK and C-Jun N-terminal kinase (JNK). Inhibition of ERK1/2 or p38MAPK or JNK with kinase inhibitors (U0126 or SB203580 or SP600125, respectively) or genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-p38MAPK) significantly prevented CoCl2-induced injuries. Pretreatment with NaHS or NAC inhibited not only CoCl2-induced ROS production, but also phosphorylation of ERK1/2 and p38MAPK. Thus, we demonstrated that a concurrent activation of ERK1/2, p38MAPK and JNK participates in CoCl2-induced injuries and that H2S protects PC12 cells against chemical hypoxia-induced injuries by inhibition of ROS-activated ERK1/2 and p38MAPK pathways. Our results suggest that inhibitors of ERK1/2, p38MAPK and JNK or antioxidants may be useful for preventing and treating hypoxia-induced neuronal injury

    Hydrogen Sulfide Protects against Chemical Hypoxia-Induced Cytotoxicity and Inflammation in HaCaT Cells through Inhibition of ROS/NF-κB/COX-2 Pathway

    Get PDF
    Hydrogen sulfide (H2S) has been shown to protect against oxidative stress injury and inflammation in various hypoxia-induced insult models. However, it remains unknown whether H2S protects human skin keratinocytes (HaCaT cells) against chemical hypoxia-induced damage. In the current study, HaCaT cells were treated with cobalt chloride (CoCl2), a well known hypoxia mimetic agent, to establish a chemical hypoxia-induced cell injury model. Our findings showed that pretreatment of HaCaT cells with NaHS (a donor of H2S) for 30 min before exposure to CoCl2 for 24 h significantly attenuated CoCl2-induced injuries and inflammatory responses, evidenced by increases in cell viability and GSH level and decreases in ROS generation and secretions of IL-1β, IL-6 and IL-8. In addition, pretreatment with NaHS markedly reduced CoCl2-induced COX-2 overexpression and PGE2 secretion as well as intranuclear NF-κB p65 subunit accumulation (the central step of NF-κB activation). Similar to the protective effect of H2S, both NS-398 (a selective COX-2 inhibitor) and PDTC (a selective NF-κB inhibitor) depressed not only CoCl2-induced cytotoxicity, but also the secretions of IL-1β, IL-6 and IL-8. Importantly, PDTC obviously attenuated overexpression of COX-2 induced by CoCl2. Notably, NAC, a ROS scavenger, conferred a similar protective effect of H2S against CoCl2-induced insults and inflammatory responses. Taken together, the findings of the present study have demonstrated for the first time that H2S protects HaCaT cells against CoCl2-induced injuries and inflammatory responses through inhibition of ROS-activated NF-κB/COX-2 pathway

    Pressure sensitivity of dislocation density in copper single crystals at submicron scale

    No full text
    Abstract It is known that the mechanical responses of metallic samples are insensitive to confining pressure at macroscale. As a result, von Mises elastoplasticity has been commonly used to model metals in engineering practice. With the use of discrete dislocation dynamics in this study, we explore the dislocation behavior of finite-sized copper single crystals of different sizes under uniaxial compression and hydrostatic pressure, respectively. It is found that the dislocation density approaches a stable value with the increase of hydrostatic pressure while it still keeps increasing under uniaxial compression as the size-dependent yield stress is reached. This difference is also dependent on the loading rate. The yield stress under uniaxial compression exhibits the conventional loading rate effect, while the stable value of dislocation density under hydrostatic compression increases with the increase of loading rate. Moreover, a transition from being pressure-insensitive to pressure-sensitive on the evolution of dislocation density is observed under hydrostatic compression as the sample size becomes small. These findings provide useful insights into the elastoplastic responses of metallic samples at microscale

    Investigation of grain boundary and orientation effects in polycrystalline metals by a dislocation-based crystal plasticity model

    No full text
    Polycrystalline metal with well-designed grain structure exhibits different strength and ductility compared with the conventional macro scale materials. In the present study, the mechanisms of strain hardening and inhomogeneous deformation in polycrystals are analyzed by considering the interaction between dislocations and grain boundaries. Firstly, a dislocation density based crystal plasticity model is developed and then used to quantitatively study the grain size and orientation effects in polycrystals. With the decrease of grain size, the accumulation and interaction of dislocations are promoted in the grain, resulting in back-stress hardening. Simultaneously, two opposite effects of the inhomogeneity in grain orientation are obtained by evaluating the local Schmidt factors in each grain and their standard deviation. The findings highlight the effect of grain boundary on the strength and provide quantitative insight into the effect of grain orientation on ductility

    Effectiveness and Durability of Polyacrylamide (PAM) and Polysaccharide (Jag C 162) in Reducing Soil Erosion under Simulated Rainfalls

    No full text
    Polymers as a soil amendment is one of the effective measurements to reduce soil erosion. In this study, two polymers, polyacrylamide (PAM) and polysaccharide (Jag C 162), were applied to erosion plots filled with loess soil (tilted at 20°). For each polymer, four concentration levels—0, 10, 30, and 50 kg·ha−1—were applied. The treated erosion plots were then subjected to two simulated rainfall events (dry and wet run) to investigate their effectiveness and durability in controlling soil erosion. Both simulated rainfall events were at an intensity of 120 mm·h−1, and each event lasted for 30 min with 24 h free drainage in between. Results show that both polymers could reduce runoff, effectively control sheet erosion, and promote soil aggregates due to their capability to bind and stabilize soil particles. Such reducing effects were more pronounced on the Jag C 162-treated plots than on the PAM-treated plots. However, during the second (wet) run, there was more reduction of aggregate with size of >0.25 mm and greater increment of soil loss on the Jag C 162-treated plots than on the PAM-treated plots
    • …
    corecore